NAG Fortran Library Routine Document G08CBF

ثبت نشده
چکیده

G08CBF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details. 1 Purpose G08CBF performs the one-sample Kolmogorov–Smirnov test, using one of the standard distributions provided. The data consists of a single sample of n observations denoted by x 1 ; x 2 ;. .. ; x n. Let S n ðx ðiÞ Þ and F 0 ðx ðiÞ Þ represent the sample cumulative distribution function and the theoretical (null) cumulative distribution function respectively at the point x ðiÞ , where x ðiÞ is the ith smallest sample observation. The Kolmogorov–Smirnov test provides a test of the null hypothesis H 0 : the data are a random sample of observations from a theoretical distribution specified by the user against one of the following alternative hypotheses (i) H 1 : the data cannot be considered to be a random sample from the specified null distribution. (ii) H 2 : the data arise from a distribution which dominates the specified null distribution. In practical terms, this would be demonstrated if the values of the sample cumulative distribution function S n ðxÞ tended to exceed the corresponding values of the theoretical cumulative distribution function F 0 ðxÞ. (iii) H 3 : the data arise from a distribution which is dominated by the specified null distribution. In practical terms, this would be demonstrated if the values of the theoretical cumulative distribution function F 0 ðxÞ tended to exceed the corresponding values of the sample cumulative distribution function S n ðxÞ. One of the following test statistics is computed depending on the particular alternative null hypothesis specified (see the description of the parameter NTYPE in Section 5). For the alternative hypothesis H 1 : D n – the largest absolute deviation between the sample cumulative distribution function and the theoretical cumulative distribution function. Formally D n ¼ maxfD þ n ; D À n g. For the alternative hypothesis H 2 : D þ n – the largest positive deviation between the sample cumulative distribution function and the theoretical cumulative distribution function. Formally D þ n ¼ maxfS n ðx ðiÞ Þ À F 0 ðx ðiÞ Þ; 0g for both discrete and continuous null distributions. For the alternative hypothesis H 3 : D À n – the largest positive deviation between the theoretical cumulative distribution function and the sample …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAG Fortran Library Routine Document E04MFF=E04MFA

Note: this routine uses optional parameters to define choices in the problem specification and in the details of the algorithm. If you wish to use default settings for all of the optional parameters, you need only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a detailed description of the algorithm, the specification of the optio...

متن کامل

NAG Fortran Library Routine Document E04NKF=E04NKA

Note: this routine uses optional parameters to define choices in the problem specification and in the details of the algorithm. If you wish to use default settings for all of the optional parameters, you need only read Section 1 to Section 9 of this document. Refer to the additional Section 10, Section 11 and Section 12 for a detailed description of the algorithm, the specification of the optio...

متن کامل

NAG Fortran Library Routine Document E02BEF

where Ni x ð Þ denotes the normalized cubic B-spline defined upon the knots i; iþ1; . . . ; iþ4. The total number n of these knots and their values 1; . . . ; n are chosen automatically by the routine. The knots 5; . . . ; n 4 are the interior knots; they divide the approximation interval x1; xm 1⁄2 into n 7 subintervals. The coefficients c1; c2; . . . ; cn 4 are then determined as the solution...

متن کامل

NAG Fortran Library Routine Document E02BAF

In order to define the full set of B-splines required, eight additional knots 1; 2; 3; 4 and nþ4; nþ5; nþ6; nþ7 are inserted automatically by the routine. The first four of these are set equal to the smallest xr and the last four to the largest xr. The representation of sðxÞ in terms of B-splines is the most compact form possible in that only nþ 3 coefficients, in addition to the nþ 7 knots, fu...

متن کامل

NAG Fortran Library Routine Document C02AGF

The routine generates a sequence of iterates z1; z2; z3; . . ., such that jP ðzkþ1Þj < jP ðzkÞj and ensures that zkþ1 þ Lðzkþ1Þ ‘roughly’ lies inside a circular region of radius jF j about zk known to contain a zero of P ðzÞ; that is, jLðzkþ1Þj jF j, where F denotes the Féjer bound (see Marden (1966)) at the point zk. Following Smith (1967), F is taken to be minðB; 1:445nRÞ, where B is an upper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006